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For simultaneous identification of members of the betaproteobacterial order “Rhodocyclales” in environ-
mental samples, a 16S rRNA gene-targeted oligonucleotide microarray (RHC-PhyloChip) consisting of 79
probes was developed. Probe design was based on phylogenetic analysis of available 16S rRNA sequences from
all cultured and as yet uncultured members of the “Rhodocyclales.” The multiple nested probe set was evaluated
for microarray hybridization with 16S rRNA gene PCR amplicons from 29 reference organisms. Subsequently,
the RHC-PhyloChip was successfully used for cultivation-independent “Rhodocyclales” diversity analysis in
activated sludge from an industrial wastewater treatment plant. The implementation of a newly designed
“Rhodocyclales”-selective PCR amplification system prior to microarray hybridization greatly enhanced the
sensitivity of the RHC-PhyloChip and thus enabled the detection of “Rhodocyclales” populations with relative
abundances of less than 1% of all bacteria (as determined by fluorescence in situ hybridization) in the activated
sludge. The presence of as yet uncultured Zoogloea-, Ferribacterium/Dechloromonas-, and Sterolibacterium-
related bacteria in the industrial activated sludge, as indicated by the RHC-PhyloChip analysis, was confirmed
by retrieval of their 16S rRNA gene sequences and subsequent phylogenetic analysis, demonstrating the

suitability of the RHC-PhyloChip as a novel monitoring tool for environmental microbiology.

Members of the provisional betaproteobacterial order
“Rhodocyclales” comprise a physiologically versatile assem-
blage of bacteria, many of them responsible for the removal of
anthropogenic compounds in the environment or in biotech-
nological systems. While most members of the genera Azoarcus
and Thauera can couple the anaerobic reduction of nitrate with
the degradation of aromatic hydrocarbons (7, 40) or haloge-
nated compounds (50), other Azoarcus species are associated
with grass roots, where they fix nitrogen (17, 44). Furthermore,
it has been recognized only recently that the “Rhodocyclales”
genera Dechloromonas and Azospira harbor the dominant
(per)chlorate-reducing bacteria in the environment (1, 11).
Another important bioremediation process which exploits bac-
teria of the order “Rhodocyclales” to ameliorate anthropogenic
damage is sewage treatment. For example, an uncultured bac-
terium provisionally named Candidatus “ Accumulibacter phos-
phatis” catalyzes enhanced biological phosphorous removal in
wastewater treatment plants (WWTPs) (13, 25, 59). Other
“Rhodocyclales” to date also recalcitrant to cultivation were the
numerically dominant bacteria in activated sludge from a ni-
trifying-denitrifying WWTP, where they presumably contrib-
uted to denitrification (27).

Due to their importance for bioremediation and agriculture,
several approaches for detection of members of the order
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“Rhodocyclales” have been developed. Besides traditional cul-
tivation methods (48), molecular detection of members of this
order has been based on taxon- or clone-selective 16S rRNA
gene-targeted PCR primers or probes (4, 13, 24-27, 43, 45).
While these molecular methods are well suited for the detec-
tion of a few selected subgroups or species within the order
“Rhodocyclales,” tools for surveying the diversity of members
of this order in parallel are missing. DNA microarrays, which
have recently been introduced to microbial ecology (22) and
generally fulfill all requirements for high-resolution monitor-
ing of complex microbial communities (9, 10, 16, 32, 35, 41, 49,
55, 60-62), but a dedicated microarray for the order “Rhodo-
cyclales” is not yet available.

In this study we have developed and applied a 16S rRNA
gene-targeted oligonucleotide microarray consisting of 79
probes for the parallel detection of all bacteria of the order
“Rhodocyclales” at different hierarchical or identical phyloge-
netic levels (RHC-PhyloChip). The use of three newly de-
signed primer pairs for selective amplification of “Rhodocycla-
les” 16S rRNA genes prior to microarray hybridization allowed
the detection of rare “Rhodocyclales” groups in activated
sludge from an industrial sewage treatment plant. The mi-
croarray results were confirmed and extended by comparative
16S rRNA gene sequence and quantitative fluorescence in situ
hybridization analyses.

MATERIALS AND METHODS

Reference organisms. Tables 1 and 2 list the 12 pure cultures and the 17 16S
rRNA gene-containing clones that were used to evaluate the RHC-PhyloChip.
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TABLE 1. “Rhodocyclales” reference strains g Q5 &5 Z ZZ
Pure-culture species Strain® 165 rRNA 3 SC v 2w ) e
sequence accession no. 3 SHEZE FE2 2 28
|88 B BE E EE
Azoarcus anaerobius DSM 12081" Y14701
Azoarcus communis DSM 12120 AF011343
Azoarcus evansii DSM 6898" X77679
Azoarcus indigens LMG 9092™ L15531 o
Azoarcus sp. LU1 AJ007007 £ .
Azonexus fungiphilus LMG 19178 AF011350 g S
Azospira oryzae (Dechlorosoma DSM13638" AF170348 - R '§
suillum) L %38 8 g
Dechloromonas agitata DSM 136377 AF047462 S Qg - & '§ =
Propionivibrio pelophilus DSM 12018" AF016690 2 BE .5 = . S =
Rhodocyclus tenuis DSM 109" D16210 - . % SEf: EBEEo £
Thauera mechernichensis DSM 12266 Y17590 5 S § E8 = s 3 = R
Thauera terpenica DSM 121397 AJ005817 5 T § §<45% <58 N
. — . £ 0% 8 8558 T34
¢ Strains were obtained as lyophilized cells or active cultures. DSM, Deutsche - . -3 N B E N B o g
Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany; g 3 3 < Q“h S E3 Q“h S g SIS
LMG, Laboratorium voor Microbiologie, Universitat Gent, Belgium. IS8 §§ §§ SESESE8Se S3
5% S_S5T583sSsEY
T3 <E<XCELESCPE=SS S
SEE sS8ssSSSsssony
Sampling of activated sludge. Activated sludge samples were collected in June 2% % g 3 L2 S 8 S g 28 B 22
2002 from the intermittently aerated nitrification-denitrification basin of an in- SSS BC88RARSRRSES
Y === O 00 O] (CRO)
dustrial WWTP. This treatment plant received its sewage from a rendering plant
(Tierkorperbeseitigungsanstalt Kraftisried, Kraftisried, Germany). For DNA iso-
lation, aliquots (4 ml) of the samples were pelleted by centrifugation (5,000 rpm -
for 2 min) at the treatment plant, immediately put on ice, and stored at —20°C 5
upon arrival at the laboratory. For fluorescence in situ hybridization (FISH), an g = 5 ©) )
activated sludge sample was fixed at the WWTP with paraformaldehyde as = O = 8 o< =~ O )
. . = =00 @) &
outlined previously (15). 2 LOZ < SC) 8 3 =0 .
DNA extraction. Genomic DNA was isolated from reference organisms by & OB o < ) oo a
using the FastDNA kit (Biol01, Vista, Calif.). DNA from Kraftisried activated E N 8 é @) 8 j é @) % é =
sludge was extracted by using a modification (35) of a previously described g 2 s & < ) O : o) |5
protocol (21). S| s E 8 ﬁ ) 5 E 5 O 5 %
PCR amplification of 16S rRNA genes. For DNA microarray hybridization, <« 5 o B o0 O O o) o
16S rRNA gene fragments from DNA of “Rhodocyclales” reference pure cultures Z, 2 | < é = % —~ < 8 ~ g
were amplified by using the bacterial primer pair 616V and 630R (Table 3), % @ E G) 5 @) [L_% ; B < [L_% 3
whereas 16S rRNA gene inserts of reference clones were amplified with cloning 2 F<O O [k < < =
vector-specific primers M13F(—20) (5'-GTAAAACGACGGCCAG-3') and - 5 é = 8 O ) 59 5
MI3R (5'-CAGGAAACAGCTATGAC-3") (Invitrogen Corp., San Diego, “@ <M O : o 8 0 : S
Calif.). Amplification of 16S rRNA gene fragments from DNA of the activated E O é O O VO @) QO o
sludge sample was performed by using the bacterial primer pairs 616V and 630R m <00 O VO & <O f
and 616V and 1492R or the newly designed primer pairs A, R, or Z, each g _2
targeting different “Rhodocyclales” subgroups (Table 3). 2
Positive controls containing purified DNA from suitable reference organisms 3
were included in all of the PCR amplification experiments along with negative %0§ o f
3s < =
EElang 8 38 3 sg| =
<&
TABLE 2. “Rhodocyclales” reference 16S rRNA gene clones ﬁ o
oz
. Q -
165 rRNA gene clone accesson no. oL sowtce  (E colf mambering) s 20
. o o B g &
Kraftisried WWTP clones oS - o o T | 2F8
Al3 AF072927 0008-1545 Sa< & o7 = <z |E-E
Al6 AF234726 0008-1545 o tes <« 97 » RON I
A33 AF072925 0008-1545 g |y = Cg ? ? 8L | 228
H7 AF234684 0008-1545 g [8GX 3 28 2 SS| o33
H23 AF072926 0008-1545 = 2>2& 2 §3 = o | 258
S3 AF072918 0008-1545 = ES £ T8 2 e 5 o0,
S21 AF234738 0008-1545 RRE <« Ex ~ NS |[E53
$23 AF072921 0008-1545 YIS 4 4% | QR E
KRA34 AY689089 0094-1439 nun v Ya « wu | E 7 A
KRR356 AY689085 0175-1306 £33 ;’
KRZ64 AY689092 0066-1439 '§ 2%
KRZ65 AY689091 0066-1439 5L 2
WWTP clones o | BSE e
BNP269 N. Lee, unpublished data 0008-1511 N % % SES - f
hBPR4 N. Lee, unpublished data 0107-1263 g E . 2 % Fle= %" g'g
hBPR24 N. Lee, unpublished data ~ 0107-1263 g L Sk & EAEEREY
Wadi Gaza clones = I == x I3 | oo PEE
WGAR24 AY687927 0107-1263 S |l>x® no Q QO |EEEEEL
WGAR25 AY687928 0107-1263 YIEED B EBEI v QQ |s= v~ s
o~ < <K ~ N N

/ Primer pair Z.
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controls (no template DNA added). For 16S rRNA gene amplification, reaction
mixtures (total volume, 50 wl) containing each primer at a concentration of 25
pM were prepared by using 10X Ex Taq reaction buffer and 2.5 U of Ex Taq
polymerase (Takara Biomedicals, Otsu, Shiga, Japan). Additionally, 20 mM
tetramethylammonium chloride (Sigma, Deisenhofen, Germany) was added to
each amplification mixture to enhance the specificity of the PCR (31). Thermal
cycling was carried out by using an initial denaturation step of 94°C for 1 min,
followed by 30 cycles of denaturation at 94°C for 40 s, annealing at temperatures
ranging from 52°C to 60°C (depending on the primer pair [Table 3]) for 40 s, and
elongation at 72°C for 1.5 min. Cycling was completed by a final elongation step
of 72°C for 10 min.

The presence and sizes of the amplification products were determined by
agarose (1%) gel electrophoresis of the reaction product. Ethidium bromide-
stained bands were digitally recorded with a video documentation system (Cy-
bertech, Hamburg, Germany).

DNA microarray hybridization. 16S rRNA-targeted oligonucleotides were
designed in silico by using the ARB probe design and probe match tools (37) and
obtained from MWG Biotech (Ebersberg, Germany). Table 4 lists the sequence,
specificity, and microarray position of all oligonucleotide probes. The theoretical
melting temperatures (7,,,) of the probes were calculated according to the near-
est neighbor method by using the OligoAnalyzer 3.0 software with default set-
tings (http://biotools.idtdna.com/analyzer/oligocalc.asp). For each probe and
each reference organism, the free energies, AG, of the perfectly matched and the
mismatched (up to 4.5 weighted mismatches; as determined by using the ARB
probe match tool) probe-target hybrids were calculated. AG calculation was
performed with the two-state hybridization server (concentration of Na™ and
temperature were set to 0.829 M and 42°C, respectively) at the mfold website
(http://www.bioinfo.rpi.edu/applications/mfold/) (63). Additional information on
RHC-PhyloChip probes can be viewed at the probeBase website (http://www
.microbial-ecology.net/probebase) (34).

Each oligonucleotide probe contained a spacer element consisting of 15
dTTPs at the 5" end and was aminated at the 5'-terminal nucleotide to allow
covalent coupling to aldehyde group-coated CSS-100 glass slides (CEL Associ-
ates, Houston, Tex.). Fluorescence labeling of PCR amplicons, manufacturing
and processing of microarrays, and reverse hybridization on microarrays were
performed as outlined previously (35). The concentration of oligonucleotide
probes before printing was adjusted to 50 pmol pl~! in 50% dimethyl sulfoxide
to prevent evaporation during the printing procedure. RHC-PhyloChips with
triplicate spots for each probe were printed by using a GMS 417 contact arrayer
(Affymetrix, Santa Clara, Calif.). Spotted DNA microarrays were dried overnight
at room temperature in the dark to allow efficient cross-linking. Free aldehyde
groups at the slide surface were reduced with sodium borohydride solution (35).
For each reference organism, a separate microarray was hybridized, washed, and
scanned under identical conditions and settings.

Scanning of microarrays and image analysis. Fluorescence images of the
RHC-PhyloChips were recorded by scanning the slides with a GMS 418 array
scanner (Affymetrix). The fluorescence signals were quantified by using the
ImaGene 4.0 software (BioDiscovery, Inc., Los Angeles, Calif.). A grid of indi-
vidual circles defining the location of each spot on the array was superimposed
on the image to designate each fluorescent spot to be quantified. The mean signal
intensity of each spot and the local background area surrounding each spot was
determined. Subsequently, for each probe the signal-to-noise ratio (SNR) was
calculated according to the following formula:

SNR = [Ip = (Iy = Invp)] X Ippp ™!

where I is the mean pixel intensity of all replicate probe spots, I is the mean
pixel intensity of all nonsense probe spots, I; 5 is the mean pixel intensity of the
local background area around all nonsense probe spots (note that I, — In; 5
must always have a lower value than Ip), and Ip;  is the mean pixel intensity of
the local background area around all replicate probe spots. Probes for which the
SNR was equal to or greater than 2.0 were considered positive (35). Further-
more, in the reference strain evaluation experiments the SNR of each probe was
normalized against the SNR of the bacterial EUB338 probe, recorded on the
same microarray, according to the following formula:

nSNR = SNR X {[lzys = (In = Ines)] X Ipuprs™ '}

where nSNR is the normalized SNR of the specific probe, I is the mean
pixel intensity of all EUB338 probe spots, and Iz, 5 is the mean pixel intensity
of the local background area around all EUB338 probe spots.

Cl g and ng. Prior to cloning, the PCR amplification products

1

were purlﬁed by low-meltmg point agarose (1.5%) gel electrophoresis (NuSieve
3:1; FMC Bioproducts, Biozym Diagnostics GmbH, Oldendorf, Germany) and

OLIGONUCLEOTIDE MICROARRAY FOR “RHODOCYCLALES” 1375

stained in SYBR Green I solution (10 wl of 10,000X SYBR Green I stain in 100
ml of TAE buffer [40 mM Tris, 10 mM sodium acetate, 1 mM EDTA, pH 8.0];
Biozym Diagnostics GmbH) for 45 min. Bands of the expected size were excised
from the agarose gel with a glass capillary and melted with 80 pl of double-
distilled water for 10 min at 80°C (this procedure was also done for the amplicon
obtained with primer pair A, although no band was visible). Four microliters of
each solution was ligated as recommended by the manufacturer (Invitrogen
Corp.) into the cloning vector pCR2.1 of the TOPO TA cloning kit. Nucleotide
sequences were determined by the dideoxynucleotide method (46) following a
previously published protocol (42).

Phylogeny inference. All phylogenetic analyses were performed by using the
alignment and treeing tools implemented in the ARB program package (37). All
almost-full-length 16S rRNA sequences (>1,300 bases) which have been as-
signed to the order “Rhodocyclales” in the preview release of the RDP II data-
base (version September 2003) (12) and all 16S rRNA sequences obtained from
the activated sludge samples in this study were added to an ARB alignment of
about 20,000 small-subunit rRNA sequences by using the alignment tool
ARB_EDIT. Alignments were refined by visual inspection. Chimeric “Rhodocy-
clales” sequences were identified by independently subjecting base positions 1 to
513, 514 to 1026, and 1027 to 1539 (Escherichia coli numbering) of the 16S rRNA
sequence to phylogenetic analysis. Inconsistent affiliation of the gene fragments
in the phylogenetic trees was interpreted as being caused by a chimeric sequence.
In addition, the CHECK_CHIMERA program of the RDP II was used for
confirmation. Ambiguous base positions were excluded during calculation of 16S
rRNA sequence similarities.

16S rRNA phylogenetic analyses were performed by applying distance-matrix,
maximum-parsimony, and maximum-likelihood methods (36). A representative
assortment of type strain sequences of different orders of the Beta- and Gam-
maproteobacteria was used as the outgroup for treeing. Variability of the indi-
vidual alignment positions was determined by using the ARB_SAI tools and used
as a criterion to remove or include variable positions for phylogenetic analyses.
The neighbor-joining method combined with a Jukes-Cantor correction was used
to infer distance-matrix trees. Maximum-likelihood trees were calculated by
Tree-puzzle (54) and by applying the new A(x)ccelerated Maximum-Likelihood
(AxML) algorithm (52). Maximum-parsimony analyses (treeing and bootstrap-
ping) were performed with the Phylogeny Inference Package (PHYLIP, version
3.57c, J. Felsenstein, Department of Genetics, University of Washington, Seat-
tle). For parsimony bootstrap analysis, 100 resamplings were used. All phyloge-
netic consensus trees were drawn according to recommendations outlined pre-
viously (36).

FISH. The abundance of selected “Rhodocyclales” groups in the activated
sludge sample was determined by FISH combined with subsequent image anal-
ysis (14, 47). Fluorescently labeled oligonucleotide probes (Table 5) (34) were
purchased from Thermo Hybaid (Ulm, Germany). Hybridization under optimal
conditions was performed as described previously (27, 38).

Bacterial nomenclature. The names of the bacterial taxa were used in accor-
dance with the prokaryotic nomenclature proposed in the latest taxonomic out-
line of the second edition of Bergey’'s Manual of Systematic Bacteriology (http:
//dx.doi.org/10. 1007/bergeysout11n6200310) (20).

Nucleotide seq e acc bers. The sequences determined in this
study were deposited at GenBank under accession numbers AY689085 to
AY689093.

RESULTS AND DISCUSSION

16S rRNA-based phylogeny of “Rhodocyclales.” The latest
taxonomic outline of Bergey's Manual of Systematic Bacteriology
lists 30 validly published species assigned into the 12 recog-
nized genera of the “Rhodocyclaceae” (Azoarcus, Thauera,
Zoogloea, Azovibrio, Azospira, Rhodocyclus, Propionivibrio, De-
chloromonas, Ferribacterium, Quadricoccus, Azonexus, and Ste-
rolibacterium), the only family within the betaproteobacterial
order “Rhodocyclales.” The order additionally encompasses
the species “Denitromonas aromaticus” and the as yet uncul-
tured Candidatus species “Accumulibacter phosphatis” (25),
both of which still await valid description. In addition, 92 iso-
lates and 104 environmentally retrieved 16S rRNA sequences
affiliated to this order were included in the analysis.

To establish a robust and detailed phylogenetic backbone
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TABLE 5. 16S rRNA-targeted probes used for FISH

Name Sequence, 5'-3" IZ:ELTST”IS;: Specificity Reference
EUB338* GCT GCC TCC CGT AGG AGT 0-50 Most Bacteria 6
EUB338I1¢ GCA GCC ACC CGT AGG TGT 0-50 Planctomycetes 14
EUB338III* GCT GCC ACC CGT AGG TGT 0-50 Verrucomicrobia 14
GAM42a GCC TTC CCA CAT CGT TT 35 “Gammaproteobacteria” 38
BET42a GCC TTC CCA CIT CGT TT 35 “Betaproteobacteria” 38
AT1458 GAA TCT CAC CGT GGT AAG CGC 50 Most members of the Azoarcus-Thauera-Denitromonas 43
lineage

S-#-0TU1-1415-a-A-20 TTC TGG TAA ACC CCA CTC CC 25 Zoogloea lineage (including all KRZ Kraftisried 27
clones from this study)

S-#-0TU3-0445-a-A-20 TTA GGG GCC ACC GTT TCG TT 30 Kraftisried activated sludge clones of the 27

Sterolibacterium lineage

“ EUB338, EUB338I1I, and EUB338III were applied simultaneously to target

for subsequent design of microarray probes and for future
taxonomic and environmental studies, an evaluation of the
phylogeny of cultivated and yet uncultivated “Rhodocyclales”
was performed. Initially, 10 sequences from environmental 16S
rRNA clones (GenBank accession numbers AJ009452,
AF245350, AF280861, AF281119, AY118150, AF529340,
AY082472, AB089100, AB089101, and AF204249) were iden-
tified as chimeras and omitted from all subsequent analyses.
The remaining 218 almost-full-length 16S rRNA sequences of
“Rhodocyclales” were phylogenetically analyzed by calculating
similarities and applying distance-matrix, maximum-parsi-
mony, and maximum-likelihood methods for treeing.

The minimum 16S rRNA sequence similarity of two mem-
bers of the “Rhodocyclales” was 88.1%. This is in the range of
minimal similarities previously reported for other bacterial
families e.g., 83% each for “Desulfobacteraceae” and “Desulfo-
vibrionaceae” (33), 89% for “Nitrosomonadaceae” (30), and
90% for Chlamydiaceae (18), and therefore legitimates subclassi-
fication of all “Rhodocyclales” into the single family “Rhodocycla-
ceae” (http://dx.doi.org/10.1007/bergeysoutline200310) (20) from
an rRNA-based point of view.

Independently of the phylogeny inference method applied,
members of the “Rhodocyclaceae” could be subdivided into
nine different monophyletic lineages (Fig. 1). The phylogenetic
positions of these lineages to other betaproteobacterial orders
could not be unambiguously determined, as shown by a poly-
tomic tree topology (Fig. 1). With the exception of the anaer-
obic consortium clone SJA-109 lineage, designated according
to an environmental clone sequence from an anaerobic, tri-
chlorobenzene-transforming microbial consortium (58), each
lineage was represented by at least one validly described or
cultured species, indicating that lineage-level biodiversity of
“Rhodocyclaceae” is well reflected by available cultured strains.
Detailed phylogenetic trees showing the affiliation of all mem-
bers of each “Rhodocyclaceae” lineage can be downloaded
at http://www.microbial-ecology.net/supplements.asp (supple-
mental Fig. S1).

Probe design and microarray format. In general, the same
strategies for in silico development and the same technical
set-up for fabrication and hybridization of the RHC-PhyloChip
were used as for the development of a 16S rRNA-targeted
oligonucleotide microarray for detection of all lineages of rec-
ognized sulfate-reducing prokaryotes (SRP-PhyloChip) (35).

Initially, the specificities of all previously published 16S

most Bacteria (14).

rRNA-targeted probes and primers for “Rhodocyclales” (13,
24-27, 43, 45) were reevaluated with the updated 16S rRNA
database. Eighteen probes were found to target “Rhodocycla-
les” only and were therefore included on the RHC-PhyloChip,
although not all of them target monophyletic “Rhodocyclales”
groups (Table 4 and supplemental Fig. S2). In addition, 60
oligonucleotide probes were designed according to the “mul-
tiple probe concept” (3, 8) to specifically target “Rhodocycla-
les” at hierarchical and identical phylogenetic levels (Table 4
and Fig. S2). Because multiple nested probes can at least partly
compensate for unspecificities of individual probes (32, 35),
this probe design strategy is particularly valuable if microarray
formats are used which only allow hybridization or washing at
a single stringency. In summary, the RHC-PhyloChip probe set
consists of 78 specific probes covering the complete diversity of
“Rhodocyclales” known so far (see above), two probes target-
ing betaproteobacterial groups at a broader specificity
(BONEG663 and BTWO663) (4), six bacterial or universal
probes, and two probes as positive and negative hybridization
controls (CONT and NONSENSE) (Table 4). All probes were
designed to have the same length (18 bases, excluding the
T-spacer), but the G+C contents of the probes varied between
38.9 and 77.8%. To attenuate the influence of differing G+C
contents of probe-target duplexes on duplex stabilities, 3M
tetramethylammonium chloride was added to the washing
buffer (8, 35, 39).

RHC-PhyloChip evaluation with reference strains. The
specificity of the individual probes was tested under mono-
stringent conditions (i.e., the same hybridization and washing
conditions for all probes and microarrays). Cy5-labeled 16S
rRNA gene amplicons of each pure culture and each 16S
rRNA gene-containing clone (n = 29) were hybridized with a
separate RHC-PhyloChip. For 60 “Rhodocyclales”-specific
probes, this set of reference 16S rRNA genes contained at least
one sequence with a perfectly matched target site. None of
these probes showed false-negative signals. Out of the 18
probes for which no perfectly matched reference sequence was
available, 10 yielded positive signals with mismatching refer-
ence 16S rRNA gene amplicons, indicating that the respective
probe-target sites were accessible for hybridization. A detailed
list of the individual hybridization results can be downloaded
at http://www.microbial-ecology.net/supplements.asp (supple-
mental Table S1). Seven of the probes hybridized nonspecifi-
cally with many reference organisms not having fully comple-
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Neisseriales

Sterolibacterium lineage
92.5%

Zoogloea lineage 94.3%

Spirillum volutans Azoarcus-
Thauera- 91.6%
Burkholderiales Denitromonas lineage
100 100
Hydrogenophilales Azovibrio lineage 97.5%
anaerobic consortium clone SJA-109 lineage 97.9%
Gamma- . :
. oral strain AOBKA lineage 99.7%
proteobacteria
Azospira lineage 95.1%
Rhodocyclales
Dechloromonas- Rhodocyclaceae
Ferribacterium- Rhodocyclus- 9 1% 88.1%
Quadricoccus- Propionivibrio- 7 i
Azonexus lineage Accumulibacter lineage
91.8%
10%

FIG. 1. 16S rRNA-based phylogenetic tree of the “Rhodocyclales” and selected type strains of other betaproteobacterial orders. The consensus
tree is based on maximum-likelihood analysis (AxXML) performed with a 50% conservation filter for the “Betaproteobacteria.” The bar indicates
10% estimated sequence divergence. Polytomic nodes connect branches for which a relative order could not be determined unambiguously by
applying neighbor-joining, maximum-parsimony, and maximum-likelihood treeing methods. Numbers at branches indicate percent parsimony
bootstrap values. Branches without numbers had bootstrap values of less than 50%. The minimum 16S rRNA sequence similarity for each

“Rhodocyclales” lineage is shown.

mentary probe target sites and were therefore excluded from
the final version of the RHC-PhyloChip (listed separately in
Table 4 and supplemental Table S1).

In order to compare the hybridization efficiency of the dif-
ferent RHC-PhyloChip probes, the signal-to-noise ratios
(SNRs) of the probes were normalized against the SNR of the
bacterial probe EUB338 recorded on the same microarray.
The resulting nSNRs for perfectly matched probe-target du-
plexes ranged from 0.2 (for probe A33-587 with Kraftisried
WWTP clone A33) to 48.0 (for probe BTWO663 with Azon-
exus fungiphilus), demonstrating that the signal intensities of
individual probes vary strongly if excess target DNA is added.
It has been observed previously that the duplex yield of differ-
ent rRNA gene-targeted microarray probes can differ consid-
erably (32, 35, 41), and on the RHC-PhyloChip the duplex
yield was significantly positively correlated with the theoretical
T,, of the probe (Spearman nonparametric correlation test:
R = 0.342, P = 0.013). The latter point demonstrated that the
addition of tetramethylammonium chloride did not completely
abolish the influence of the G+C content on the duplex yield
of different probes.

Of the 2,291 different hybridizations (each reference DNA

W positive probe signal
1501 M D

O negative probe signal

M

0

100+

50+

Number of probe-target combinations

0- I]DIJ

-25 -20 -15 -10 -5 0
AG [keal mol ]

FIG. 2. Frequency distribution of AG values for positive (black
bars) and negative (white bars) probe-target combinations having up
to five mismatches. The horizontal lines indicate the 5th and 95th
percentiles and the median value (M). The difference between the AG
values of positive and negative probe-target combinations was highly
significant (analysis of variance, P < 0.001).
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FIG. 3. (A) DNA microarray diversity analysis of “Rhodocyclales”

in

activated sludge from the industrial WWTP Kraftisried. Three RHC-

PhyloChips were hybridized separately with fluorescently labeled 16S rRNA gene PCR amplicons that were retrieved from the activated sludge
sample by using either bacterial or “Rhodocyclales” subgroup-selective (R or Z) primer pairs (Table 3). Each probe was spotted in triplicate. For
each microarray position, the probe sequence and specificity are depicted in Table 4. Probe spots having a signal-to-noise ratio (SNR) equal to
or greater than 2.0 are indicated by boldface boxes and were considered positive. In the composite microarray pattern, probes which were positive
in any of the three individual RHC-PhyloChip hybridizations are indicated by black boxes. (B) Flow chart illustrating the presence of distinct
“Rhodocyclales” groups in the activated sludge from Kraftisried as inferred from the composite microarray pattern. For each probe, the position

on the microarray is indicated in the superscript text.

with each probe) which were performed in total, 208 (9.1%)
were false-positive (positive probe signal with a nontarget or-
ganism having one or more mismatches in the probe target
site), while no hybridizations were false-negatives (supplemen-
tal Table S1). The occurrence of some false-positive results is
almost impossible to avoid with a monostringent microarray
hybridization approach, because the stability of mismatched
probe-target hybrids is difficult to predict in silico and influ-
enced by many factors, such as (i) the number of mismatches,
(ii) the nature of the mismatching nucleotides, (iii) the position
of the mismatches in the probe target site, and (iv) possible
stacking interactions of nucleotides adjacent to the mismatches
(19, 53, 56, 57). However, specific identification of target or-
ganisms is still possible with the RHC-PhyloChip because of
the multiple probe concept (the theoretical specificities of the
nested probes are depicted in supplemental Fig. S2). Never-
theless, future microarray probe design would be further im-
proved if oligonucleotide probe parameters were available

which allow estimation of the hybridization behavior of each
probe in silico (53).

One hybridization parameter that might be a suitable can-
didate is the free energy, AG, of a given perfectly matching or
mismatching probe-target hybrid (23, 55). On the RHC-Phy-
loChip, the AG values of most (88%) of the false-positive
probe-target hybrids with one or two mismatches were in a
similar range (—22 to —16 kcal mol™!) to AG values of all
perfectly matched probe-target pairs (—25 to —17 kcal mol ™),
providing an explanation of why discrimination was not suc-
cessful under monostringent hybridization conditions. As can
be inferred from Fig. 2, most of the positive probe-target
hybrids (84%) (including false-positive signals) had a AG be-
low —16 kcal mol~"'. Additionally, only 3% of all probe-target
combinations that yielded no hybridization signal had also a
AG below —16 kcal mol ™~ !. Therefore, a AG threshold of —16
kcal mol ™! could provide useful guidance for future preselec-
tion of appropriate probes in silico (Fig. 2) but does not abolish
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FIG. 4. 16S rRNA gene phylogenetic consensus tree based on maximum-likelihood analysis (Tree-puzzle) performed with a 50% conservation
filter for the “Betaproteobacteria.” The tree shows the affiliation of clone sequences (boldface type) retrieved from the sewage treatment plant
Kraftisried by using “Rhodocyclales” subgroup-selective primer pairs A (KRA clones), R (KRR clones), and Z (KRZ clones) for PCR. The grey
box shows affiliation to a “Rhodocyclales” lineage. The bar indicates 10% estimated sequence divergence. Polytomic nodes connect branches for
which a relative order could not be determined unambiguously by applying neighbor-joining, maximum-parsimony, and maximum-likelihood
treeing methods. The percent reliability value of each internal branch indicates how often the corresponding cluster was found among 50,000
intermediate trees during quartet puzzling. Values below 70% are not shown. Parentheses indicate the perfect-match target organisms of the
probes. Probe S-*-OTU1-1415-a-A-20 (OTU1-1415) (Table 5) is depicted in bold and was used for quantitative FISH analysis. The microarray
position is depicted after the probe name. Probes RHC630, RHC143, RHC222, RHC175a, and RHC175b, perfectly matching some of the

Kraftisried clones, are not shown to enhance clarity.

the need for extensive empirical testing of the hybridization
behavior of microarray probes. It should be further stressed
that the AG threshold of —16 kcal mol ™' might only apply to
the microarray set-up and the hybridization conditions used in
this study.

RHC-PhyloChip application in activated sludge. To dem-
onstrate the applicability of the RHC-PhyloChip for rapid
screening of “Rhodocyclales” diversity in environmental sam-
ples, activated sludge from the nitrifying-denitrifying WWTP
Kraftisried was analyzed. Kraftisried was chosen as a model
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system because in 1996 members of diverse lineages of
“Rhodocyclales” comprised more than one third of the entire
bacterial biovolume in this WWTP (27).

Initially, 16S rRNA genes were amplified from Kraftisried
DNA by using standard bacterial primers, fluorescently la-
beled, and hybridized with the RHC-PhyloChip. Surprisingly,
the hybridization pattern obtained did not indicate the pres-
ence of members of the “Rhodocyclales” below the lineage
level [some probes (BTWO663, ATD1459, RHC630,
RHC175a, RHC143, RHC222, and RHACS55) targeting
“Rhodocyclales” at broader phylogenetic levels showed positive
signals but almost all probes of higher specificity were nega-
tive] (Fig. 3A). To find an explanation for this unexpected
result, the relative abundance of “Rhodocyclales” in this
WWTP was analyzed quantitatively by FISH. Compared to
1996, the relative abundance of “Betaproteobacteria” in the
activated sludge from 2002 decreased from 47 to 18% of all
bacteria detectable by FISH (Table 5). Similarly, the abun-
dance of members of the “Rhodocyclales” decreased dramati-
cally between the two samples. While the activated sludge from
1996 contained significant amounts of “Rhodocyclales” detect-
able by probes AT1458, S-*-OTUI1-1415-a-A-20, and S-*-
OTU3-0445-a-A-20, [each targeting a “Rhodocyclales” group
found previously in this WWTP (27)] (Table 5), less than 1%
of the cells hybridized with these probes in the WWTP sample
from 2002.

To increase the sensitivity of the RHC-PhyloChip, three
“Rhodocyclales”-subgroup-selective primer pairs called A, R,
and Z (together targeting almost all “Rhodocyclales”) (Table 3)
were designed and applied for amplification of 16S rRNA
genes prior to microarray hybridization. Although these new
primers were selected to amplify 16S rRNA gene fragments of
the maximum possible length, the target sites of some RHC-
PhyloChip probes are outside the amplified 16S rRNA gene
region (Table 4), and these probes must thus be ignored during
interpretation of hybridization patterns.

Each “Rhodocyclales”-subgroup-selective primer pair was
used separately for amplification of Kraftisried activated
sludge DNA at low stringency (Table 3) to allow potential
primer binding to 16S rRNA genes of “Rhodocyclales” having
mismatches in the primer target sites. PCR products of the
expected length were obtained for primer pairs R and Z, but
no primer pair A PCR product was observed after gel electro-
phoresis. The “Rhodocyclales” subgroup-selective PCR ampli-
cons obtained were fluorescently labeled and hybridized with
two separate RHC-PhyloChips. The RHC-PhyloChip hybrid-
ization patterns of the R and Z amplicons differed from each
other and from the pattern obtained by using general bacterial
primer pairs (Fig. 3A). In more detail, the hybridization pat-
tern obtained with primer pair R indicated the presence of
bacteria related to the genera Ferribacterium and Dechloromo-
nas, whereas the hybridization pattern obtained with primer
pair Z pointed to the presence of Zoogloea species.

A composite microarray fingerprint of the “Rhodocyclales”
community present in activated sludge from Kraftisried was
created by merging the separate microarray hybridization pat-
terns obtained with the “Rhodocyclales”-subgroup-selective
and the common bacterial 16S rRNA gene amplicons (Fig.
3A). Besides Ferribacterium/Dechloromonas-related bacteria
and Zoogloea species, this composite microarray fingerprint
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additionally indicated the presence of members of the Steroli-
bacterium lineage (Fig. 3B).

The microarray results were confirmed independently by
cloning and sequencing of the 16S rRNA gene PCR products
obtained with the three “Rhodocyclales” subgroup-selective
primers. It should be noted that cloning of PCR products
amplified from Kraftisried DNA with primer pair A was suc-
cessful, although only small amounts of PCR product could be
retrieved (see above). All 16S rRNA gene clones obtained with
primer pairs Z and A were closely related to clones already
found in the Kraftisried WWTP in 1996 (27) and belonged to
the genus Zoogloea and the Sterolibacterium lineage, respec-
tively (Fig. 4). In contrast, all 16S rRNA gene sequences ob-
tained by using primer pair R clustered with members of the
genera Dechloromonas and Ferribacterium (Fig. 4), which were
not detected by the 16S rRNA full-cycle approach in Kraftis-
ried WWTP samples from 1996 (27). The phylogeny of all
retrieved 16S rRNA gene sequences was in perfect agreement
with the microarray results. Furthermore, the sequenced 16S
rRNA genes have perfectly matched target sites for the probes
that showed a positive signal in the RHC-PhyloChip analyses
(Figs. 3 and 4).

The microarray hybridizations, the retrieved 16S rRNA se-
quences, and the quantitative FISH data collected in this study
provide corroborating evidence that substantial changes have
occurred within the “Rhodocyclales” community in Kraftisried
since the first bacterial community analysis of this WWTP (27).
The dramatic decline in “Rhodocyclales,” assumed to be the
major denitrifiers in this system (27), from 35% of the total
bacterial biovolume in 1996 to less than 1% in 2002 may have
been caused by the seasonal implementation of a partial am-
monium stripping step prior to biological nitrogen removal in
1999. This physical sewage treatment step reduces the ammo-
nia concentration and increases the salt concentration in the
sewage and probably had dramatic consequences for the pop-
ulation structure of nitrifiers (data not shown) and potentially
denitrifying heterotrophs in the activated sludge.
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